JSON for Modern C++  3.6.1

◆ number_unsigned_t

template<template< typename U, typename V, typename... Args > class ObjectType = std::map, template< typename U, typename... Args > class ArrayType = std::vector, class StringType = std::string, class BooleanType = bool, class NumberIntegerType = std::int64_t, class NumberUnsignedType = std::uint64_t, class NumberFloatType = double, template< typename U > class AllocatorType = std::allocator, template< typename T, typename SFINAE=void > class JSONSerializer = adl_serializer>
using nlohmann::basic_json::number_unsigned_t = NumberUnsignedType

RFC 7159 describes numbers as follows:

The representation of numbers is similar to that used in most programming languages. A number is represented in base 10 using decimal digits. It contains an integer component that may be prefixed with an optional minus sign, which may be followed by a fraction part and/or an exponent part. Leading zeros are not allowed. (...) Numeric values that cannot be represented in the grammar below (such as Infinity and NaN) are not permitted.

This description includes both integer and floating-point numbers. However, C++ allows more precise storage if it is known whether the number is a signed integer, an unsigned integer or a floating-point number. Therefore, three different types, number_integer_t, number_unsigned_t and number_float_t are used.

To store unsigned integer numbers in C++, a type is defined by the template parameter NumberUnsignedType which chooses the type to use.

Default type

With the default values for NumberUnsignedType (uint64_t), the default value for number_unsigned_t is:

uint64_t

Default behavior

  • The restrictions about leading zeros is not enforced in C++. Instead, leading zeros in integer literals lead to an interpretation as octal number. Internally, the value will be stored as decimal number. For instance, the C++ integer literal 010 will be serialized to 8. During deserialization, leading zeros yield an error.
  • Not-a-number (NaN) values will be serialized to null.

Limits

RFC 7159 specifies:

An implementation may set limits on the range and precision of numbers.

When the default type is used, the maximal integer number that can be stored is 18446744073709551615 (UINT64_MAX) and the minimal integer number that can be stored is 0. Integer numbers that are out of range will yield over/underflow when used in a constructor. During deserialization, too large or small integer numbers will be automatically be stored as number_integer_t or number_float_t.

RFC 7159 further states: > Note that when such software is used, numbers that are integers and are > in the range $[-2^{53}+1, 2^{53}-1]$ are interoperable in the sense

that implementations will agree exactly on their numeric values.

As this range is a subrange (when considered in conjunction with the number_integer_t type) of the exactly supported range [0, UINT64_MAX], this class's integer type is interoperable.

Storage

Integer number values are stored directly inside a basic_json type.

See also
number_float_t – type for number values (floating-point)
number_integer_t – type for number values (integer)
Since
version 2.0.0

Definition at line 13516 of file json.hpp.